In this post I will explain some of the steps I took in order to train a neural network from earning call transcripts, which I gathered from Seeking Alpha. First using a webscraper in order to get the text, I was able to transform them into their stem terms (in order to reduce the number of features) and treat them as categorical variables, and ultimately use the changes in stock prices after the transcipt was released as the target variable.
Libraries and set-up
As always, we first load all the needed libraries and set up our Amazon bucket (although is not required and I will only use it to deploy the model once it is built). We also load the NRC lexicon which we will use to reduce the dimensionality of our input variables by pruning out ‘not important’ terms.
library(quantmod)
library(knitr)
library(tm)
library(quanteda)
library(tidyverse)
library(rvest)
library(pins)
b = board_s3(
'',
region = 'us-west-1',
access_key = '',
secret_access_key = ''
)
## NRC lexicon
download.file('https://raw.githubusercontent.com/mjockers/syuzhet/master/R/sysdata.rda',destfile = 'syu.dic.rda')
load('syu.dic.rda')
Text-mining functions
We also set-up a couple of functions we will need to scrap the web articles.
countwords = function(str1){
lengths(gregexpr("\\W+", str1)) + 1
}
## Gets text from a link
getText = function(link){
try({
link %>%
read_html() %>%
html_nodes('p') %>%
html_text() %>%
paste(collapse = '. ') %>%
str_replace_all('\\.\\.','\\.')
})
}
## Gets date from an article given a link
getInfo = function(url){
try({ attrs = url %>%
read_html() %>%
html_nodes('span') %>%
html_attrs()
date = (url %>%
read_html() %>%
html_nodes('span') %>%
html_text())[match(1, (sapply(attrs, names) %>% str_extract_all('data') %>% sapply(length)))]
t = url %>%
read_html() %>%
html_nodes('h1') %>%
html_text()
return(cbind(t,date))})
}
Scraping & data-wrangling
We can now employ the functions we built and fetch the data from articles that have IDs between the range of 4478500:4479741. I have tried adding a bit of commentary to my code to explain what it does.
vec = paste0("https://seekingalpha.com/article/",4478500:4479741)
info = vec %>% lapply(getInfo)
##get dates
info2 = c()
web = c()
for(i in 1:length(info)){
if(length(info[[i]]) == 2){
web = c(web , i )
info2 = rbind(info2 ,info[[i]])
}
}
## get names of tickers
t = info2[,1] %>%
str_extract_all('[(][A-Z]{1,5}[)]') %>%
unlist %>%
str_remove_all('\\(|\\)')
ind = info2[,1] %>%
str_which('[(][A-Z]{1,5}[)]') %>%
unlist
df = cbind( info2[ind,1:2], t)
##transform into stem terms
txt = vec[web][ind] %>% sapply(getText) %>% sapply( stemDocument)
nwords = sapply( txt, countwords)
ind = which(nwords>500) %>% unname
mat = dfm(txt[ind])
mat = mat[,((mat %>% colnames() %>% tolower()) %in% syuzhet_dict[,1])]
##get dates
adj = (df[,2] %>%
str_extract('Jan.+2022') %>%
str_remove_all('Jan..|......$') %>%
parse_number())
##get change in prices before and after transcript was released
prices = c()
for ( i in 1:length(adj)){
if(adj[i]!=14){
entry = NA
try({
symb = getSymbols(df[i,3],auto.assign = F) %>% tail(n = 9)
dates = symb %>% time %>% lubridate::day()
entry = ((symb[findInterval( adj[i], dates )+1,1][[1]])-
(symb[findInterval( adj[i], dates ),1])[[1]])/ symb[findInterval( adj[i], dates ),1][[1]]
})
} else{
entry = NA
}
prices = c(prices, entry)
}
##define input and output variables
predictor = mat[!is.na(prices[ind]),] %>% as.matrix()
target = prices[ind] %>% na.omit() %>% scales::rescale()
##scale the input variables
for( i in 1:ncol(predictor)){
predictor[,i] = predictor[,i]%>% scales::rescale()
}
pin_write(b, predictor, 'nlpnn.data')
## EXAMPLE OF INPUT #####################################################
predictor %>% head %>% knitr::kable()
| good | limit | like | pleas | sir | thank | concern | expect | risk | actual | hope | new | great | results | strong | disrupt | solid | level | growth | worth | versus | share | forward | holiday | momentum | well | build | talk | focus | major | grow | real | right | capabilities | expand | mortar | markets | pandemic | offer | sever | visit | quit | care | protect | difficult | work | center | prospect | fall | shared | progress | nicely | diligence | doubt | demand | smart | support | option | proven | essential | execution | allow | certain | lead | greater | efficiency | lowest | better | lost | contend | model | compelling | pay | provide | develop | partner | save | hard | soft | appropriate | benefits | reason | free | prove | success | benefit | sorry | trusted | trust | safe | responsibly | interruptions | fee | valuable | main | found | general | surpass | convenience | admit | greatest | accomplish | appreciation | commit | uncertain | contributor | stellar | join | determination | include | ahead | foreign | offset | weak | food | cleaning | led | fresh | enjoy | gross | talent | expenses | interest | credit | cash | risks | gain | loss | convert | asset | tax | favor | restrict | trend | shortages | respect | repay | debt | adapt | curious | significance | govern | improvement | accordingly | optimistic | big | hit | incur | kind | yes | thanks | technology | distort | best | leverage | profession | adept | strengthen | faster | smartly | wise | enough | supported | highlight | fair | exchange | stronger | disconnect | chairman | analyst | vice | present | reform | performance | fleet | partnership | launch | strength | importantly | global | safety | hire | continue | production | labor | targets | exceed | management | safeguard | symptom | virus | vigilant | unpredictable | steadfast | positive | encouraging | complement | robust | journey | innovation | proud | director | flourish | congratulations | unite | depth | priority | avoid | delays | delivery | vital | refurbish | friend | modern | formula | lighter | coalition | guidance | amend | refund | uncertainty | attract | balance | adopt | clear | improve | wait | split | excel | downturn | difficulties | delay | lag | glitch | seamless | depress | correct | deal | improved | crude | impress | broader | assets | nice | late | dynamic | scrap | extend | true | quicker | wrong | luck | baby | boom | beneficial | drag | convent | convict | expert | consensus | outreach | strengthens | fantastic | volatility | extra | clarify | correctly | tough | inclement | disappoint | problems | bleed | significant | problematic | optimist | cut | capability | grant | pure | attention | athletic | wolf | agreement | finally | vision | adjustments | culture | passion | enthusiasts | pursuit | content | premier | league | fit | expertise | opportunity | finer | helpful | mistake | broadly | modest | talented | spent | terrific | flatter | learn | please | derogatory | player | love | promote | sun | unequivocally | rough | acquiring | friction | endeavor | perfect | growing | kick | legal | including | pioneer | flagship | treatment | obstruct | drug | horizon | eject | patient | supportive | ash | novel | tumor | alone | consistent | authorization | interested | accomplished | ulcer | exciting | critic | litigation | block | opportunities | important | hopefully | clearer | disease | works | confidence | flexibility | balanced | barrier | physician | practice | clean | black | leader | comfort | action | argument | enthusiasm | stroke | study | bleeding | government | advance | white | win | excellence | foundation | bullish | setback | anger | delayed | stop | sham | completion | approval | disappointing | forget | complex | warn | guardian | disruptions | familiar | accountability | boldly | decisiveness | ownership | reward | generation | payment | problem | organization | relationships | contact | fruition | rich | reliant | pain | genius | equity | lean | setbacks | acceptable | rational | procedure | focal | catheter | negative | upsetting | focused | accept | wish | easier | pleasure | bright | younger | wedge | hot | death | chronic | superior | efficacy | working | groundwork | promising | concept | cure | candid | die | diagnosis | detect | improvements | cadaver | challenge | alter | attack | damage | inhibit | attenuated | discussion | exemplar | increased | eligible | reimbursement | mortal | fallen | recommend | impressive | augment | understanding | therapeutic | straight | relief | addict | nervous | presence | friendly | remiss | urgent | solution | stuck | solutions | star | efficient | pressure | detriment | worse | stress | ill | suffer | illness | professional | compliant | proper | truth | penetration | burnt | bonus | judicious | prudent | inflation | increases | super | united | building | savings | stable | appreciate | promises | domestic | information | productivity | spite | succeed | constraint | outbreak | unwavering | discipline | difficulty | exclude | impair | construct | commitment | unfortunately | utility | properly | defer | constrain | force | skill | craft | slow | handicap | marginally | imminent | cushion | entity | excess | permanently | evolution | determined | prosper | fine | bite | wealth | selective | entertain | entertainment | lose | outperform | jewel | increase | attractive | award | rip | strongly | foremost | benign | losses | decline | slower | prolong | disappear | sneak | lack | compete | ready | expensive | excellent | disclaim | approved | authorized | young | demonstrated | flu | cancer | latent | readiness | morbid | axe | shot | strain | tremendously | available | sick | infect | killer | lesson | contagious | boost | protected | forbid | boosted | scientist | protection | prevent | expectation | infected | severe | lucky | virulent | drastic | healthy | protective | strongest | prevented | infection | break | serum | patent | interesting | compliance | excited | prime | fever | competition | bless | dream | scratch | incredible | invitation | permitting | scourge | thrive | durability | preventive | money | guts | fire | epidemic | fight | heroes | advantage | traps | combat | fear | resist | endemic | unprotected | specifics | fail | excitingly | imminently | candidate | crowded | deficiencies | injections | mutant | danger | threat | granted | scary | concerns | accord | allergies | bad | evil | extraordinary | allergy | unfamiliar | hospitals | nuclear | manufacturers | waste | efficiently | achievable | stability | confront | tenacity | agility | welcome | flush | applaud | cough | cold | recovery | effective | prefer | loud | honest | honor | indiscernible | bold | legacy | separation | performer | usual | suspend | successful | straightforward | underestimate | poor | mutual | capture | wound | chance | sweet | clearly | excite | dementia | mentor | depression | wit | breakthrough | fastest | hallmark | engage | tangles | eager | await | critical | cellular | ability | disorder | sage | special | goods | disability | symptoms | bolster | sustainability | humanity | overlook | flexible | reaffirm | delight | defend | community | proactive | courageous | mistaken | recommendation | compliment | toxic | progression | popular | sustainable | cleanest | stark | cleaner | outcome | innovative | adaptable | vibrant | noted | ideal | absent | confident | favorable | coast | traditional | carefully | fabrication | pressures | shelter | helped | pride | prevention | leukemia | trigger | dark | killing | remodel | ambitions | copycat | remarkable | aspiration | cornerstone | resistance | giving | resolve | shares | prospects | decent | withstand | shock | hoping | praying | creep | sensitive | wow | profound | mindful | consistently | personalized | glad | bias | guard | assured | happy | consent | harm | knowledge | art | comfortable | wonderful | mature | butt | anticipating | precisely | firmer | cheers | easiest | eat | won | awesome | attacking | broken | meaningful | cloud | cooperative | pretend | superiority | heighten | precious | founder | solve | bath | developer | limits | burn | appeal | abilities | cheer | funny | guide | strike | simplest | neat | dice | represented | taxing | organized | labyrinth | brittle | effectively | aggressive | inexpensive | broke | shortage | inflationary | facts | trump | veteran | majority | democracy | elect | botch | frugal | cancel | normalcy | aggressively | secured | predictability | consistency | distract | accomplishments | boosting | received | primary | vacations | recommendations | stringent | illnesses | pleasant | buoyant | ideally | popularity | complexity | blocking | oracle | blindly | hybrid | richer | choice | successfully | incident | fairly | enable | productive | lying | phenomenal | resign | disconnected | engaged | dishonor | universal | unknown | incorrect | considerations | affirm | acumen | grit | illicit | survive | deflation | relentless | notably | harvest | cares | spirits | spirit | creative | permissible | expend | unfortunate | deter | primer | tender | weaken | goodwill | cultivation | fell | leading | reflects | optimism | continuing | regulatory | potency | unsustainable | terminate | create | caution | producer | afford | reckless | dominate | diet | snack | burdens | chop | concerned | participation | shame | flawless | hemorrhage | committed | enthusiast | launched | strengthening | accepted | acquire | steady | hidden | gem | overwhelm | efficacious | convenient | stupid | competitive | initiated | strategic | greetings | spoilage | campus | drought | replenish | resources | softer | spoil | outstanding | recover | breakdown | desert | resolved | err | congestion | complicated | attorney | godsend | dire | storm | economics | slip | mire | additional | fortunate | apologize | hate | suck | unexpected | revert | outstrip | likes | patience | retention | smack | amazing | paperwork | crazy | tougher | assist | eradicate | alert | steep | slam | wild | lethal | effectiveness | household | pill | crystal | afraid | scare | fame | completely | blind | certainty | hang | competent | accumulate | flying | sizable | rout | fun | sore | winner | magnet | instantly | clever | beautifully | trivial | boy | suffered | magic | zealous | draconian | renewal | threaten | accurate | indicator | instruction | knight | aid | companion | suspect | surveillance | obesity | discovery | learning | unveil | infinity | solved | cumbersome | achieve | exempt | detection | unbound | task | schizophrenia | survival | cheap | tit | mortality | accolade | advocacy | steal | fervent | empathy | lessen | promised | subtract | disciplined | providing | plush | fully | worries | uplift | grand | marvel | battlefield | hash | unclear | premise | fraud | constrained | speech | animation | creator | twin | rundown | burden | counsel | static | paramount | accident | fuse | maturity | advantages | confirmed | distinction | controller | achievement | shine | toughest | worsen | gold | abolish | failed | fulfillment | introduced | limited | authority | motivation | reasonable | guru | decelerated | tenable | thanksgiving | keynote | failure | intuitive | bog | wars | infant | organic | disadvantages | compounding | complaint | sad | nuisance | plaintiff | hurt | penalty | improves | relapse | misuse | lawyer | abuse | murky | prevail | guilty | erosion | battle | hassle | deduct | outsider | bore | improving | boring | hardline | spear | slime | shopping | easing | gift | worst | purposeful | wages | negatives | positives | scientific | pollution | covet | smoothly | exquisite | integrity | stainless | fragmented | spectacular | active | gains | philosophies | durable | perpetuity | tension | unscathed | immaterial | ban | freed | thrill | golden | panic | reliability | powerful | wins | disruptive | stabilize | laugh | cool | dreams | lesser | backward | breaks | chatter | leads | happiness | pervasive | agree | loyalty | redeem | rewards | collectively | collective | breakfast | withdraw | creativity | lapse | loyal | lags | refresh | enlighten | presentable | dent | enabled | precision | simpler | substantial | blowout | planning | stolen | breach | infringement | damages | needless | unsuccessful | negotiate | overturned | attain | overturn | exhaust | ram | awarded | electronics | succeeded | unforeseen | excitement | awards | promise | explorer | wireless | contribution | disputes | economic | blocks | inevitably | severity | connections | innovate | affordable | reject | deserts | beautiful | evident | appreciated | marshal | predictions | permission | securely | unique | trending | allege | moderate | clarity | intervention | congrats | acid | runaway | hollow | unrivaled | cartridge | contrary | unmatched | happier | therapeutics | depressed | biopsy | willing | instruct | dilemma | insulting | useful | stops | smarter | excuses | facetious | ridiculous | dump | mess | crisis | exaggerating | died | strange | assembly | producing | widespread | rampant | defense | dust | accomplishment | slash | abrupt | merit | fired | overcome | winners | strut | heck | complain | dedication | unusual | calculation | blame | skeptic | dead | distress | bargain | liked | insane | funk | medley | artisan | lumpy | pleased | limitation | inflammation | accessible | exploring | fracture | avert | influenza | qualify | infections | malaria | paralysis | deaf | blindness | manageable | metastasis | persistence | grave | hottest | recession | excuse | dissect | peel | deserve | fluctuation | costly | neighbor | demands | fate | lion | calculating | tragic | disagree | satisfy | sadly | staggering | brood | objective | weakened | strengthened | brilliant | intelligence | relentlessly | doom | convincing | degradation | antagonist | slowly | elder | simplifying | overdue | agile | landmark | ambition | explorations | explicit | suppressed | excluded | pleasing | disruption | lie | child | absolute | secure | underworld | departure | consternation | helping | war | attracting | argue | relevant | relation | weeds | breaking | warfare | goodness | uninsured | misalign | empower | cholesterol | rigorous | hesitate | classic | hack | threats | exploitation | exploit | vulnerable | vulnerability | glitz | nimble | agreed | prohibit | grunt | attacks | bulletproof | fend | attacker | quiet | nosey | odd | liable | bound | anomaly | qualm | ripe | superb | swift | integrated | hype | shoot | hamper | mud | blow | competence | unstoppable | enjoyed | trick | diminish | boundless | missing | fatal | missed | unlikely | rival | pros | con | surmount | included | withdrawn | immature | staggered | debilitating | desirable | misconception | avoided | amen | joined | compatible | destiny | reliable | stall | unfair | evasive | insignificant | sunk | hitting | tariff | misunderstood | measured | breathtaking | exposed | vengeance | stealthy | cry | prompt | apt | tactics | extort | theft | criminals | adversary | bastion | rigor | enrich | openness | hunting | interrupt | spark | cracking | crack | visitation | educated | damning | partisan | bout | catastrophe | refuse | unsuccessfully | leave | entertaining | punch | premises | easy | thoughtful | nightmare | scrambles | monster | arduous | usurp | kidding | brother | skewed | failing | advocate | scheme | worked | favorite | beachfront | warranty | manage | botox | advances | adjunct | toxin | spa | healing | heal | aesthetics | freedom | visionary | university | impressively | interests | credibility | wizard | plea | pretty | heaven | rage | proprietary | chosen | hell | opportunistic | oversight | straighten | fiction | rejected | hood | unproven | attraction | offense | welcomed | silly | warm | damper | winning | downside | inaudible | surprise | inventive | immense | sharply | hectic | stole | visitor | risky | malicious | fundamental | helps | procession | redirect | elimination | fascinating | trouble | thinker | jackpot | latency | continuity | respects | toll | useless | isolation | complacent | arrogant | dear | mortgage | promotion | standout | peculiar | extensive | fresher | vanguard | upset | aberration | jurisdiction | virgin | recoup | equally | skid | civil | complication | advantageous | infuse | cataract | dysfunction | myopia | lifeblood | lockup | explosion | anxiety | childhood | birth | dying | overstate | earnest | invite | cute | miser | virtuous | edits | stab | experienced | advancement | independence | sleek | exceptional | isolated | brilliance | fray | stigma | king | uneven | advanced | cleared | invasive | identifying | cherish | outperforming | intense | solving | importance | acquired | irrelevant | dominant | misread | kill | garden | realistic | beneficiary | bust | dinner | correction | regret | resignation | labors | scarce | mistrust | beg | strict | restrain | fortunately | noncompliance | absence | loom | ease | impairment | daunt | comprehensive | vacation | feverish | rash | depreciation | talents | fade | volatile | energetic | sunny | enrichment | cater | ensure | decrease | corporation | unsecured | deferral | accommodation | brave | fabulous | fans | foul | wasted | bother | dumb | molotov | shocking | misconceptions | lurk | analyze | enhanced | flaw | robbery | gun | horrible | sponsor | gracious | burned | relaxation | absurd | weakness | famous | variety | preferred | keen | overlooked | cad | stimulate | render | silk | restored | resilient | attendants | infectious | leisure | forgotten | sticky | alarm | seasonal | perk | music | streamlined | recipient | retract | slowest | satisfied | renewed | grants | intricate | artist | misinterpret | constructive | slowed | mandatory | hopeful | weaker | subpar | payback | sophisticated | sufficient | plentiful | frustration | skeptical | brag | error | complaints | resigning | speculation | moral | derail | stopped | permanent | bonuses | entrust | endowment | liability | unjust | assistance | surcharge | jargon | respectfully | grind | reserve | flushing | fragile | refrain | subdued | combust | toilet | conceal | attendance | greet | intelligent | pinnacle | renown | crucial | accountable | affluent | custody | stubborn | simplified | tired | fuels | swine | mislead | misleading | positively |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| https://seekingalpha.com/article/4478513 | 0.3846154 | 0.6 | 0.3191489 | 0.2222222 | 0.5 | 0.1194030 | 0.3333333 | 0.3055556 | 0.1904762 | 0.0606061 | 0.2857143 | 0.4651163 | 0.25000 | 0.2 | 0.325 | 0.8 | 0.2 | 0.6153846 | 0.3333333 | 0.25 | 0.9090909 | 0.1212121 | 0.16 | 0.0952381 | 0.1538462 | 0.1489362 | 0.0714286 | 0.0857143 | 0.0909091 | 0.1052632 | 0.8947368 | 0.5333333 | 0.1666667 | 0.3333333 | 0.3636364 | 1 | 0.6666667 | 0.1818182 | 0.2222222 | 0.1333333 | 0.1428571 | 0.1 | 0.0845070 | 0.0588235 | 0.3333333 | 0.1034483 | 0.4285714 | 0.25 | 0.125 | 1 | 0.0588235 | 0.5 | 1 | 1.0 | 0.0571429 | 0.2 | 0.3684211 | 0.375 | 0.2 | 1 | 0.3333333 | 0.4615385 | 0.2000000 | 0.1818182 | 0.7142857 | 0.5 | 0.5 | 0.6428571 | 0.3333333 | 1 | 0.4117647 | 1 | 0.1 | 0.5 | 0.09375 | 0.0833333 | 0.375 | 0.5555556 | 0.5 | 1 | 0.5 | 0.2857143 | 0.2500000 | 0.5 | 0.1818182 | 0.4615385 | 0.0666667 | 1 | 0.0952381 | 0.50 | 1 | 1 | 0.1111111 | 1 | 0.2 | 0.25 | 0.5555556 | 0.5 | 1 | 0.3333333 | 1 | 0.25 | 1 | 0.0714286 | 1.0 | 0.3333333 | 1 | 0.4285714 | 1 | 1 | 0.1153846 | 1 | 0.8571429 | 0.5 | 0.3333333 | 1 | 0.6666667 | 0.0625 | 0.1666667 | 0.0416667 | 0.6666667 | 0.5 | 0.1176471 | 0.0588235 | 1.0000 | 0.5 | 0.2222222 | 0.0344828 | 1.0000000 | 0.1333333 | 0.5555556 | 0.1428571 | 0.375 | 0.0909091 | 0.5 | 0.1428571 | 1 | 0.0416667 | 0.25 | 0.2 | 1 | 0.0909091 | 0.5 | 0.5 | 1 | 0.0384615 | 0.1666667 | 0.3333333 | 0.1525424 | 0.1707317 | 0.1333333 | 0.1111111 | 1 | 0.1 | 0.3333333 | 0.2 | 1 | 0.1666667 | 0.1 | 1 | 0.5 | 0.4 | 1 | 0.1 | 0.2 | 0.25 | 0.25 | 0.3333333 | 0.0 | 0.00 | 0.0 | 0.000 | 0 | 0.0 | 0 | 0.0000000 | 0.0000000 | 0.0 | 0.0000000 | 0.0000000 | 0.0 | 0.0000000 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0 | 0.00 | 0 | 0.0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0 | 0.0 | 0.0000 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.00 | 0.0000000 | 0 | 0.0 | 0 | 0 | 0.00 | 0.000 | 0.0 | 0.0000000 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0 | 0.00 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0.000 | 0 | 0.0 | 0.00 | 0 | 0 | 0 | 0 | 0.0 | 0.0000000 | 0.0000000 | 0 | 0 | 0 | 0.00 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0 | 0.0 | 0.00 | 0.0000000 | 0.0 | 0.0000000 | 0.00 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0.0000000 | 0 | 0 | 0.00 | 0 | 0.0000000 | 0.0 | 0.0000000 | 0 | 0.0 | 0 | 0 | 0.000 | 0.0 | 0 | 0.0000000 | 0.0000000 | 0 | 0.00 | 0.000 | 0 | 0.0 | 0 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0.0 | 0.000 | 0.0000000 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0 | 0 | 0.00 | 0.0 | 0.0000000 | 0.00 | 0.0 | 0.0 | 0.00 | 0 | 0.00 | 0.00 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0.0000000 | 0 | 0 | 0.00 | 0.0000000 | 0.0 | 0.0 | 0.0 | 0.0000000 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0.0 | 0 | 0.0000000 | 0.0 | 0.0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0.00 | 0 | 0.0000000 | 0.00 | 0 | 0 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0 | 0 | 0.00 | 0 | 0 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.000 | 0.00 | 0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0000000 | 0.00 | 0.0000000 | 0.0 | 0 | 0.0 | 0 | 0 | 0.0000000 | 0.0000000 | 0 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0.0000000 | 0.0 | 0 | 0 | 0.0000000 | 0.0 | 0.0 | 0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| https://seekingalpha.com/article/4478514 | 0.4615385 | 0.2 | 0.3191489 | 0.0555556 | 0.0 | 0.1940299 | 0.0000000 | 0.6111111 | 0.0000000 | 0.2121212 | 0.1428571 | 0.5348837 | 0.40625 | 0.2 | 0.475 | 0.6 | 0.0 | 0.3076923 | 0.1600000 | 0.25 | 0.3636364 | 0.2121212 | 0.08 | 0.0952381 | 1.0000000 | 0.4893617 | 0.1785714 | 0.4285714 | 0.1818182 | 0.2105263 | 0.3684211 | 0.3333333 | 0.1000000 | 0.0000000 | 0.1363636 | 0 | 0.1666667 | 0.1818182 | 0.0000000 | 0.0666667 | 0.1428571 | 0.4 | 0.0000000 | 0.1176471 | 0.3333333 | 0.4827586 | 0.0000000 | 0.25 | 0.000 | 0 | 0.0588235 | 0.0 | 0 | 0.5 | 0.4285714 | 0.0 | 0.2631579 | 0.000 | 0.0 | 0 | 0.0000000 | 0.1538462 | 0.4000000 | 0.3636364 | 0.0000000 | 0.5 | 0.0 | 0.5000000 | 0.0000000 | 0 | 0.0000000 | 0 | 0.2 | 0.0 | 0.06250 | 0.1666667 | 0.000 | 0.2222222 | 0.0 | 0 | 0.0 | 0.2857143 | 0.2500000 | 0.0 | 0.1818182 | 0.6153846 | 0.1333333 | 0 | 0.0000000 | 0.50 | 0 | 0 | 0.0000000 | 0 | 0.0 | 0.25 | 0.1111111 | 0.0 | 0 | 0.3333333 | 0 | 0.50 | 0 | 0.0714286 | 0.0 | 0.0000000 | 0 | 0.2857143 | 0 | 0 | 0.0769231 | 0 | 0.4285714 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0.0000 | 0.0000000 | 0.3750000 | 0.1111111 | 0.0 | 0.2352941 | 0.1764706 | 1.0000 | 0.0 | 0.1111111 | 0.0000000 | 0.6666667 | 0.6000000 | 0.5555556 | 0.2857143 | 0.000 | 0.0909091 | 1.0 | 0.0000000 | 0 | 0.0416667 | 0.00 | 0.0 | 0 | 0.0909091 | 0.0 | 0.0 | 1 | 0.0000000 | 0.3333333 | 0.3333333 | 0.3050847 | 0.1951220 | 0.1333333 | 0.0000000 | 0 | 0.2 | 0.0000000 | 0.0 | 0 | 0.1666667 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.2 | 0.2 | 0.00 | 1.00 | 0.3333333 | 0.4 | 0.04 | 0.6 | 0.250 | 1 | 0.4 | 1 | 0.2222222 | 0.0454545 | 0.2 | 0.3333333 | 0.6428571 | 0.2 | 0.0909091 | 0.5 | 0.2857143 | 1 | 0.1111111 | 0.5714286 | 0.2857143 | 1 | 0.3333333 | 0.0769231 | 1 | 1 | 1 | 1.0 | 0.5 | 0.5 | 0.4285714 | 0.0833333 | 0.3333333 | 0.6 | 0.75 | 1 | 0.5 | 0.2222222 | 0.3333333 | 0.3333333 | 0.5 | 1 | 0.1666667 | 1 | 1 | 0.5 | 0.1875 | 0.5 | 1 | 1 | 0.3 | 1 | 1 | 0.3333333 | 0.4 | 1 | 0.1111111 | 0.1111111 | 0.6666667 | 0.1666667 | 0.3333333 | 0.25 | 0.6666667 | 1 | 0.1 | 1 | 1 | 0.25 | 0.125 | 0.5 | 0.0571429 | 1 | 1 | 0.3333333 | 0.0769231 | 0.2 | 0.50 | 0.1666667 | 0.5 | 0.4 | 0.2222222 | 0.250 | 1 | 0.5 | 0.25 | 1 | 1 | 1 | 1 | 0.2 | 0.3333333 | 0.0526316 | 1 | 1 | 1 | 0.25 | 0.3333333 | 0.3333333 | 0.5 | 1 | 0.3333333 | 1 | 0.1666667 | 0.3333333 | 0.5 | 1 | 1 | 0.2 | 0.25 | 0.1428571 | 0.5 | 0.3333333 | 0.25 | 0 | 0 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0.0000000 | 0 | 0 | 0.00 | 0 | 0.0000000 | 0.0 | 0.0000000 | 0 | 0.0 | 0 | 0 | 0.000 | 0.0 | 0 | 0.0000000 | 0.0000000 | 0 | 0.00 | 0.000 | 0 | 0.0 | 0 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0.0 | 0.000 | 0.0000000 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0 | 0 | 0.00 | 0.0 | 0.0000000 | 0.00 | 0.0 | 0.0 | 0.00 | 0 | 0.00 | 0.00 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0.0000000 | 0 | 0 | 0.00 | 0.0000000 | 0.0 | 0.0 | 0.0 | 0.0000000 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0.0 | 0 | 0.0000000 | 0.0 | 0.0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0.00 | 0 | 0.0000000 | 0.00 | 0 | 0 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0 | 0 | 0.00 | 0 | 0 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.000 | 0.00 | 0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0000000 | 0.00 | 0.0000000 | 0.0 | 0 | 0.0 | 0 | 0 | 0.0000000 | 0.0000000 | 0 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0.0000000 | 0.0 | 0 | 0 | 0.0000000 | 0.0 | 0.0 | 0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| https://seekingalpha.com/article/4478587 | 0.1794872 | 0.2 | 0.3829787 | 0.4444444 | 0.0 | 0.2238806 | 0.0000000 | 0.0833333 | 0.0476190 | 0.0303030 | 0.0000000 | 0.4186047 | 0.06250 | 0.0 | 0.050 | 0.0 | 0.0 | 0.0769231 | 0.1733333 | 0.00 | 0.0909091 | 0.0606061 | 0.12 | 0.0000000 | 0.0000000 | 0.1702128 | 0.4285714 | 0.5428571 | 0.0000000 | 0.1578947 | 0.6315789 | 1.0000000 | 0.1333333 | 0.0000000 | 0.1363636 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.6 | 0.0140845 | 0.0000000 | 0.0000000 | 0.2758621 | 0.0000000 | 0.25 | 0.000 | 0 | 0.0000000 | 0.0 | 1 | 0.0 | 0.0000000 | 0.0 | 0.0000000 | 0.000 | 0.0 | 0 | 0.0000000 | 0.0769231 | 0.2666667 | 0.1818182 | 0.0000000 | 0.0 | 0.0 | 0.5714286 | 0.0000000 | 0 | 0.3529412 | 0 | 0.7 | 0.0 | 0.06250 | 0.0000000 | 0.000 | 0.0000000 | 0.0 | 0 | 0.0 | 0.1428571 | 0.0833333 | 0.0 | 0.0000000 | 0.1538462 | 0.0000000 | 0 | 0.0000000 | 0.00 | 0 | 0 | 0.0000000 | 0 | 0.4 | 0.00 | 0.5555556 | 0.5 | 0 | 0.0000000 | 0 | 0.00 | 0 | 0.1428571 | 0.0 | 0.0000000 | 0 | 0.7142857 | 0 | 0 | 0.2307692 | 0 | 0.1428571 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0.0000 | 0.0000000 | 0.0000000 | 0.3333333 | 0.0 | 0.2352941 | 0.0000000 | 0.0625 | 0.0 | 0.0000000 | 0.1034483 | 0.0000000 | 0.1333333 | 0.0000000 | 0.0000000 | 0.125 | 0.0000000 | 0.0 | 0.1428571 | 0 | 0.0000000 | 0.00 | 0.2 | 0 | 0.0000000 | 0.0 | 0.0 | 0 | 0.3461538 | 0.0000000 | 0.0000000 | 0.0677966 | 0.0243902 | 0.3333333 | 0.0000000 | 0 | 0.2 | 0.0000000 | 0.2 | 0 | 0.0000000 | 0.0 | 0 | 0.0 | 0.2 | 0 | 0.0 | 0.6 | 0.00 | 0.00 | 0.3333333 | 0.0 | 0.00 | 0.4 | 0.250 | 0 | 0.0 | 0 | 0.0000000 | 0.0000000 | 0.2 | 0.0000000 | 0.0714286 | 0.0 | 0.0000000 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0 | 0 | 0 | 0.0 | 0.0 | 0.5 | 0.0000000 | 0.5000000 | 0.0000000 | 0.2 | 0.25 | 0 | 0.5 | 0.2222222 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0 | 0.0 | 0.0000 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.00 | 0.0000000 | 0 | 0.0 | 0 | 0 | 0.00 | 0.000 | 0.0 | 0.1142857 | 0 | 0 | 0.0000000 | 0.2307692 | 0.0 | 0.00 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0.000 | 0 | 0.0 | 0.00 | 0 | 0 | 0 | 0 | 0.0 | 0.0000000 | 0.0000000 | 0 | 0 | 0 | 0.00 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0.0 | 1 | 0 | 0.2 | 0.00 | 0.0000000 | 0.0 | 0.3333333 | 0.00 | 1 | 1 | 0.0714286 | 0.1428571 | 1.0 | 1 | 0.2 | 1 | 1 | 1 | 0.2272727 | 1 | 1 | 0.75 | 1 | 0.3846154 | 0.5 | 0.3333333 | 1 | 0.5 | 1 | 1 | 0.500 | 0.2 | 1 | 0.1111111 | 0.0833333 | 1 | 0.25 | 0.125 | 1 | 0.5 | 1 | 0.1666667 | 1 | 0.3333333 | 1 | 0.2 | 0.3333333 | 0 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0.0 | 0.000 | 0.0000000 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0 | 0 | 0.00 | 0.0 | 0.0000000 | 0.00 | 0.0 | 0.0 | 0.00 | 0 | 0.00 | 0.00 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0.0000000 | 0 | 0 | 0.00 | 0.0000000 | 0.0 | 0.0 | 0.0 | 0.0000000 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0.0 | 0 | 0.0000000 | 0.0 | 0.0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0.00 | 0 | 0.0000000 | 0.00 | 0 | 0 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0 | 0 | 0.00 | 0 | 0 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.000 | 0.00 | 0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0000000 | 0.00 | 0.0000000 | 0.0 | 0 | 0.0 | 0 | 0 | 0.0000000 | 0.0000000 | 0 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0.0000000 | 0.0 | 0 | 0 | 0.0000000 | 0.0 | 0.0 | 0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| https://seekingalpha.com/article/4478791 | 0.1794872 | 0.4 | 0.2127660 | 0.0000000 | 0.0 | 0.1492537 | 0.6666667 | 0.6666667 | 0.1428571 | 0.0303030 | 0.0000000 | 0.3953488 | 0.21875 | 0.0 | 0.100 | 0.0 | 0.0 | 0.0000000 | 0.6000000 | 0.00 | 0.4545455 | 0.1515152 | 0.48 | 0.0000000 | 0.2307692 | 0.3191489 | 0.2142857 | 0.1142857 | 0.4545455 | 0.0526316 | 0.4736842 | 0.1333333 | 0.0666667 | 0.3333333 | 0.3636364 | 0 | 0.0833333 | 0.0000000 | 0.0000000 | 0.0666667 | 0.0000000 | 0.0 | 0.0000000 | 0.0000000 | 0.1666667 | 0.1034483 | 0.0000000 | 0.00 | 0.125 | 0 | 0.0588235 | 0.0 | 0 | 0.0 | 0.0000000 | 0.0 | 0.1052632 | 0.250 | 0.2 | 0 | 1.0000000 | 0.0000000 | 0.0000000 | 0.5454545 | 0.0000000 | 0.0 | 0.0 | 0.3571429 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0 | 0.0 | 0.09375 | 0.1666667 | 0.000 | 0.0000000 | 0.0 | 0 | 0.0 | 0.4285714 | 0.2500000 | 0.0 | 0.1818182 | 0.0769231 | 0.1333333 | 0 | 0.0000000 | 0.00 | 0 | 0 | 0.0000000 | 0 | 0.0 | 0.00 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0.25 | 0 | 0.0000000 | 0.0 | 0.3333333 | 0 | 0.2857143 | 0 | 0 | 0.3076923 | 0 | 0.4285714 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0 | 0.0000000 | 0.0000000 | 0.2500 | 0.0 | 0.0000000 | 0.0344828 | 0.0000000 | 0.8666667 | 0.0000000 | 0.0000000 | 0.000 | 0.0909091 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0.25 | 0.0 | 0 | 0.0000000 | 0.0 | 0.0 | 0 | 0.1153846 | 0.0000000 | 0.0000000 | 0.1186441 | 0.0000000 | 0.1333333 | 0.0000000 | 0 | 0.1 | 0.0000000 | 0.0 | 0 | 1.0000000 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.1 | 0.0 | 0.00 | 0.00 | 0.3333333 | 0.4 | 0.00 | 0.0 | 0.375 | 1 | 0.0 | 0 | 0.1111111 | 0.5909091 | 1.0 | 0.3333333 | 0.1428571 | 0.0 | 0.0000000 | 0.0 | 0.0000000 | 0 | 0.1111111 | 0.0000000 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0 | 0 | 0 | 0.2 | 0.0 | 0.0 | 0.1428571 | 0.1666667 | 0.0000000 | 0.4 | 0.00 | 0 | 0.0 | 0.0000000 | 0.6666667 | 0.3333333 | 0.0 | 0 | 0.0000000 | 0 | 0 | 0.0 | 0.0000 | 0.0 | 0 | 0 | 0.2 | 0 | 0 | 0.0000000 | 0.1 | 0 | 0.0000000 | 0.6111111 | 0.0000000 | 0.1666667 | 0.0000000 | 0.00 | 0.0000000 | 0 | 0.0 | 0 | 0 | 0.00 | 0.000 | 0.0 | 0.1714286 | 0 | 0 | 0.0000000 | 0.3846154 | 0.4 | 0.00 | 0.3333333 | 0.0 | 0.0 | 0.1111111 | 0.125 | 0 | 0.0 | 0.25 | 0 | 0 | 1 | 0 | 0.0 | 0.0000000 | 0.0000000 | 0 | 0 | 0 | 0.00 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0 | 0.0 | 0.00 | 0.0000000 | 0.0 | 0.0000000 | 0.00 | 0 | 0 | 0.0714286 | 0.1428571 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0.0000000 | 0 | 0 | 0.25 | 0 | 0.0000000 | 0.0 | 0.6666667 | 0 | 0.0 | 0 | 0 | 0.000 | 0.0 | 0 | 0.0000000 | 0.0000000 | 0 | 0.00 | 0.125 | 0 | 0.0 | 0 | 0.1666667 | 0 | 0.0000000 | 0 | 0.0 | 0.0000000 | 1 | 0.0416667 | 1 | 0.1111111 | 1 | 0.6 | 1 | 0.3333333 | 1 | 1 | 0.1449275 | 1 | 0.5 | 0.125 | 0.1428571 | 0.3333333 | 0.5 | 0.5 | 0.3333333 | 1 | 1 | 0.25 | 0.2 | 0.3333333 | 0.25 | 0.2 | 0.2 | 0.25 | 1 | 0.05 | 0.25 | 0.3333333 | 0.5 | 1 | 0.6666667 | 0.3636364 | 1 | 1 | 0.25 | 0.1428571 | 0.2 | 0.2 | 0.5 | 0.3333333 | 0.2 | 0.1666667 | 1 | 1 | 1 | 0.0 | 0 | 0.0000000 | 0.0 | 0.0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0.00 | 0 | 0.0000000 | 0.00 | 0 | 0 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0 | 0 | 0.00 | 0 | 0 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.000 | 0.00 | 0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0000000 | 0.00 | 0.0000000 | 0.0 | 0 | 0.0 | 0 | 0 | 0.0000000 | 0.0000000 | 0 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0.0000000 | 0.0 | 0 | 0 | 0.0000000 | 0.0 | 0.0 | 0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| https://seekingalpha.com/article/4478806 | 0.1794872 | 0.4 | 0.4468085 | 0.0555556 | 0.0 | 0.0746269 | 0.0000000 | 0.6388889 | 0.0476190 | 0.0303030 | 0.0714286 | 0.4186047 | 0.21875 | 0.2 | 0.200 | 0.6 | 0.0 | 0.8461538 | 0.3866667 | 0.00 | 0.0909091 | 0.3636364 | 0.32 | 0.0000000 | 0.0000000 | 0.3404255 | 0.0714286 | 0.3428571 | 0.6060606 | 0.1052632 | 0.5789474 | 0.0666667 | 0.1166667 | 0.0000000 | 0.0454545 | 0 | 0.6666667 | 0.0000000 | 0.1111111 | 0.1333333 | 0.0000000 | 0.3 | 0.0422535 | 0.0000000 | 0.1666667 | 0.5517241 | 0.2857143 | 0.00 | 0.000 | 0 | 0.0588235 | 0.0 | 0 | 0.0 | 0.0285714 | 0.0 | 0.0000000 | 0.000 | 0.0 | 0 | 0.3333333 | 0.3846154 | 0.0000000 | 0.4545455 | 0.7142857 | 0.0 | 0.0 | 0.5000000 | 0.0000000 | 0 | 0.5882353 | 0 | 0.0 | 0.5 | 0.21875 | 0.0833333 | 0.000 | 0.0000000 | 0.0 | 0 | 0.0 | 0.0000000 | 0.3333333 | 0.0 | 0.0000000 | 0.3076923 | 0.1333333 | 0 | 0.0000000 | 0.25 | 0 | 0 | 0.0000000 | 0 | 0.0 | 0.00 | 0.2222222 | 0.0 | 0 | 0.0000000 | 0 | 0.00 | 0 | 0.4285714 | 0.5 | 0.0000000 | 0 | 0.5714286 | 0 | 0 | 0.0000000 | 0 | 0.2857143 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0.0000 | 0.0000000 | 0.0000000 | 0.6666667 | 0.0 | 0.1176471 | 0.0000000 | 0.2500 | 0.0 | 0.0000000 | 0.0000000 | 0.3333333 | 0.2000000 | 0.0000000 | 0.0000000 | 0.000 | 0.0000000 | 0.5 | 0.1428571 | 0 | 0.0000000 | 0.00 | 0.0 | 0 | 0.0000000 | 0.5 | 0.0 | 0 | 0.5769231 | 0.0000000 | 0.0000000 | 0.0677966 | 0.1219512 | 0.1333333 | 0.3333333 | 0 | 0.1 | 0.0000000 | 0.0 | 0 | 0.3333333 | 0.2 | 0 | 0.0 | 0.2 | 0 | 0.2 | 0.2 | 0.00 | 0.50 | 0.0000000 | 0.2 | 0.08 | 0.0 | 0.500 | 0 | 1.0 | 0 | 0.0000000 | 0.1818182 | 0.0 | 0.1666667 | 0.3571429 | 0.0 | 0.0454545 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0.4285714 | 0 | 0.0000000 | 0.0000000 | 0 | 0 | 0 | 0.2 | 0.0 | 1.0 | 0.2857143 | 0.0000000 | 0.3333333 | 0.0 | 0.00 | 0 | 0.0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0 | 0.0 | 0.0000 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0.0000000 | 0.5 | 0 | 0.3333333 | 0.0000000 | 0.3333333 | 0.0000000 | 0.0000000 | 0.75 | 0.0000000 | 0 | 0.0 | 0 | 0 | 0.00 | 0.000 | 0.0 | 0.0285714 | 0 | 0 | 0.0000000 | 0.0769231 | 0.0 | 0.25 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0.000 | 0 | 0.0 | 0.00 | 0 | 0 | 0 | 0 | 0.0 | 0.0000000 | 0.0526316 | 0 | 0 | 0 | 0.00 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 1.0000000 | 0.0000000 | 0.0 | 0 | 0 | 0.0 | 0.25 | 0.0000000 | 0.0 | 0.0000000 | 0.00 | 0 | 0 | 0.0000000 | 0.4285714 | 0.0 | 0 | 0.4 | 0 | 0 | 0 | 0.0000000 | 0 | 0 | 0.00 | 0 | 0.0769231 | 0.0 | 0.0000000 | 0 | 0.0 | 0 | 0 | 0.125 | 0.0 | 1 | 0.4444444 | 0.0000000 | 0 | 0.25 | 0.000 | 0 | 0.0 | 0 | 0.1666667 | 0 | 0.0000000 | 0 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0 | 0 | 0.0000000 | 0 | 0 | 0.1159420 | 0 | 0.0 | 0.125 | 0.0000000 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0 | 0 | 0.00 | 0.2 | 0.0000000 | 0.00 | 0.0 | 0.2 | 0.00 | 0 | 0.00 | 0.00 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0.0909091 | 0 | 0 | 0.00 | 0.5714286 | 0.0 | 0.0 | 0.0 | 0.0000000 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0.5 | 1 | 0.6666667 | 1.0 | 0.5 | 1 | 1 | 1 | 0.125 | 1 | 1 | 0.25 | 1 | 0.3333333 | 0.75 | 1 | 1 | 0.5 | 0.3333333 | 1 | 1 | 1 | 0.5 | 0.75 | 0.5 | 0.25 | 0.0833333 | 0.1111111 | 0.3333333 | 0.2 | 0.5 | 0.0526316 | 1 | 0.3333333 | 1 | 1 | 0.25 | 1 | 1 | 0.5 | 0.3333333 | 1 | 1 | 1 | 1 | 0.3333333 | 0.3333333 | 0.125 | 0.00 | 0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0000000 | 0.00 | 0.0000000 | 0.0 | 0 | 0.0 | 0 | 0 | 0.0000000 | 0.0000000 | 0 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0.0000000 | 0.0 | 0 | 0 | 0.0000000 | 0.0 | 0.0 | 0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| https://seekingalpha.com/article/4478807 | 0.2564103 | 0.4 | 0.0851064 | 0.1666667 | 0.0 | 0.0746269 | 0.0000000 | 0.2777778 | 0.1428571 | 0.0303030 | 0.0000000 | 0.1395349 | 0.12500 | 0.2 | 0.050 | 0.0 | 0.0 | 0.3846154 | 0.1200000 | 0.00 | 0.0909091 | 0.3636364 | 0.24 | 0.0000000 | 0.0000000 | 0.2553191 | 0.0714286 | 0.0857143 | 0.0909091 | 0.1052632 | 0.0000000 | 0.2000000 | 0.1000000 | 0.0000000 | 0.0909091 | 0 | 0.0833333 | 0.0000000 | 0.1111111 | 0.5333333 | 0.0000000 | 0.0 | 0.0281690 | 0.0588235 | 0.3333333 | 0.1379310 | 0.0000000 | 0.00 | 0.250 | 0 | 0.4705882 | 0.0 | 0 | 0.0 | 0.0000000 | 0.0 | 0.1052632 | 0.125 | 0.0 | 0 | 0.0000000 | 0.0769231 | 0.0000000 | 0.0000000 | 0.2857143 | 0.0 | 0.0 | 0.0714286 | 0.0000000 | 0 | 0.0588235 | 0 | 0.0 | 0.0 | 0.21875 | 0.0833333 | 0.125 | 0.2222222 | 0.5 | 0 | 0.0 | 0.1428571 | 0.2500000 | 0.0 | 0.3636364 | 0.6923077 | 0.0000000 | 0 | 0.0000000 | 0.25 | 0 | 0 | 0.0000000 | 0 | 0.0 | 0.00 | 0.3333333 | 0.0 | 0 | 0.0000000 | 0 | 0.00 | 0 | 0.0000000 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0 | 0 | 0.0000000 | 0 | 0.1428571 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0.0000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0 | 0.1764706 | 0.0000000 | 0.1250 | 0.0 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0666667 | 0.0000000 | 0.0000000 | 0.000 | 0.0000000 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0.00 | 0.0 | 0 | 0.0000000 | 0.0 | 0.0 | 0 | 0.1153846 | 0.0000000 | 0.0000000 | 0.0338983 | 0.2195122 | 0.0666667 | 0.0000000 | 0 | 0.1 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.5 | 0.2 | 0.00 | 0.00 | 0.0000000 | 0.0 | 0.04 | 0.0 | 0.125 | 0 | 0.0 | 0 | 0.0000000 | 0.2727273 | 0.1 | 0.1666667 | 0.2142857 | 0.2 | 0.0454545 | 0.0 | 0.0000000 | 0 | 0.1111111 | 0.1428571 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | 0.1428571 | 0.0000000 | 0.6666667 | 0.0 | 0.00 | 0 | 0.0 | 0.0000000 | 0.3333333 | 0.0000000 | 0.5 | 0 | 0.1666667 | 0 | 0 | 0.0 | 0.0000 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0.1666667 | 0.0000000 | 0.0000000 | 0.0000000 | 0.00 | 0.0000000 | 0 | 0.0 | 0 | 0 | 0.00 | 0.000 | 0.0 | 0.0000000 | 0 | 0 | 0.3333333 | 0.0000000 | 0.0 | 0.00 | 0.3333333 | 0.0 | 0.0 | 0.2222222 | 0.000 | 0 | 0.0 | 0.25 | 0 | 0 | 0 | 0 | 0.0 | 0.0000000 | 0.0000000 | 0 | 0 | 0 | 0.00 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0 | 0.0000000 | 0.0000000 | 0.0 | 0 | 0 | 0.2 | 0.00 | 0.0000000 | 0.0 | 0.0000000 | 0.00 | 0 | 0 | 0.0714286 | 0.0000000 | 0.2 | 0 | 0.0 | 0 | 0 | 0 | 0.0000000 | 0 | 0 | 0.25 | 0 | 0.2307692 | 0.0 | 0.0000000 | 0 | 0.0 | 0 | 0 | 0.000 | 0.8 | 0 | 0.0000000 | 0.0000000 | 0 | 0.00 | 0.000 | 0 | 0.0 | 0 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0 | 0.0000000 | 0 | 0.0000000 | 0 | 0.0000000 | 0 | 0.9 | 0 | 0.0555556 | 0 | 0 | 1.0000000 | 0 | 0.0 | 0.000 | 0.0000000 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0 | 0 | 0.00 | 0.2 | 0.0000000 | 0.00 | 0.0 | 0.0 | 0.00 | 0 | 1.00 | 0.00 | 0.0000000 | 0.0 | 0 | 0.0000000 | 0.3636364 | 0 | 0 | 0.00 | 0.0000000 | 0.0 | 0.0 | 0.0 | 0.3333333 | 0.0 | 0.1666667 | 0 | 0 | 0 | 0.0 | 0 | 0.0000000 | 0.5 | 0.0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0.50 | 0 | 0.0000000 | 0.00 | 0 | 0 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0 | 0.0 | 0.0000000 | 0 | 1.0000000 | 0 | 0 | 0.00 | 0 | 0 | 0.0 | 0.0000000 | 0 | 0 | 0 | 0 | 0.0000000 | 0.0000000 | 0.000 | 0.25 | 1 | 0.5 | 1 | 1 | 0.5 | 0.2 | 0.0833333 | 0.25 | 0.2222222 | 0.5 | 1 | 0.5 | 1 | 1 | 0.1428571 | 0.3333333 | 1 | 0.0588235 | 0.5 | 1 | 0.3333333 | 1 | 0.0263158 | 0.5 | 1 | 1 | 0.3333333 | 0.5 | 0.5 | 1 | 0.5 | 1 | 1 | 0.2 | 0.5 | 0.2 | 1 | 1 | 0.5 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
##EXAMPLE OF OUTPUT ###################################################
target %>% head %>% knitr::kable()
| x |
|---|
| 0.4044899 |
| 0.1757081 |
| 0.0458230 |
| 0.6111343 |
| 0.5286285 |
| 0.5072060 |
Neural network
Now that we have a defined data set to train with, we can start building a neural network and try to predict the price chane given a new url.
library(keras)
new.url = 'https://seekingalpha.com/article/4479741-chr-hansen-holding-s-chyhy-ceo-mauricio-graber-on-q1-2022-results-earnings-call-transcript'
new.mat = getText(new.url) %>% stemDocument() %>% dfm()
predictor = predictor[,colnames(predictor) %in% colnames(new.mat)]
(predictor %>% dim)[1] == (target %>% length)
## [1] TRUE
model = keras_model_sequential() %>%
layer_dense(units= ncol(predictor), activation="relu", input_shape= ncol(predictor)) %>%
layer_dense(units= (ncol(predictor) %>% sqrt %>% floor), activation = "relu") %>%
layer_dense(units=1, activation="linear")
model %>% compile(
loss = "mse",
optimizer = "adam",
metrics = list("mean_absolute_error")
)
model %>% summary()
## Model: "sequential"
## ________________________________________________________________________________
## Layer (type) Output Shape Param #
## ================================================================================
## dense_2 (Dense) (None, 160) 25760
## ________________________________________________________________________________
## dense_1 (Dense) (None, 12) 1932
## ________________________________________________________________________________
## dense (Dense) (None, 1) 13
## ================================================================================
## Total params: 27,705
## Trainable params: 27,705
## Non-trainable params: 0
## ________________________________________________________________________________
history <- model %>% fit(
predictor,
target,
epochs = 600,
batch_size = 10,
validation_split = 0.2
)
tags = colnames(predictor)
toBpred = rep(0, dim(predictor)[2])
toBpred[colnames(predictor) %in% colnames(new.mat)] = new.mat[,colnames(new.mat) %in% colnames(predictor)]
Result
We can scale back the output to its original scale and see what is the expected price change.
scales::rescale(
predict(model, toBpred %>% matrix(nrow = 1)),
to = c( min(prices %>% na.omit()), max(prices %>% na.omit())),
from = 0:1
)
## [,1]
## [1,] 0.004079509